Classification of Linear Differential Operators with an Invariant Subspace of Monomials
نویسنده
چکیده
A complete classification of linear differential operators possessing finite-dimensional invariant subspace with a basis of monomials is presented.
منابع مشابه
Quasi - Exactly - Solvable Differential Equations
A general classification of linear differential and finite-difference operators possessing a finite-dimensional invariant subspace with a polynomial basis is given. The main result is that any operator with the above property must have a representation as a polynomial element of the universal enveloping algebra of the algebra of differential (difference) operators in finitedimensional represent...
متن کاملSubspace-diskcyclic sequences of linear operators
A sequence ${T_n}_{n=1}^{infty}$ of bounded linear operators on a separable infinite dimensional Hilbert space $mathcal{H}$ is called subspace-diskcyclic with respect to the closed subspace $Msubseteq mathcal{H},$ if there exists a vector $xin mathcal{H}$ such that the disk-scaled orbit ${alpha T_n x: nin mathbb{N}, alpha inmathbb{C}, | alpha | leq 1}cap M$ is dense in $M$. The goal of t...
متن کاملExact solutions of a linear fractional partial differential equation via characteristics method
In recent years, many methods have been studied for solving differential equations of fractional order, such as Lie group method, invariant subspace method and numerical methods, cite{6,5,7,8}. Among this, the method of characteristics is an efficient and practical method for solving linear fractional differential equations (FDEs) of multi-order. In this paper we apply this method f...
متن کاملLie - algebraic approach to the theory of polynomial solutions . III . Differential equations in two real variables
Classification theorems for linear differential equations in two real variables, possessing eigenfunctions in the form of the polynomi-als (the generalized Bochner problem) are given. The main result is based on the consideration of the eigenvalue problem for a polynomial elements of the universal enveloping algebras of the algebras sl 3 (R), sl 2 (R) ⊕ sl 2 (R) and gl 2 (R) ⊲< R r+1 , r > 0 ta...
متن کاملLie-algebras and Linear Operators with Invariant Subspaces
A general classification of linear differential and finite-difference operators possessing a finite-dimensional invariant subspace with a polynomial basis (the generalized Bochner problem) is given. The main result is that any operator with the above property must have a representation as a polynomial element of the universal enveloping algebra of some algebra of differential (difference) opera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1993